Monday, 8 September 2014

Small Asteroid 2014 RC to Pass Near Earth

Small Asteroid 2014RC Will Pass Near Earth
This graphic depicts the passage of asteroid 2014 RC past Earth on September 7, 2014. At time of closest approach, the space rock will be about one-tenth the distance from Earth to the moon. Times indicated on the graphic are Universal Time. Image Credit: NASA/JPL-Caltech
This coming Sunday a twenty meter asteroid called 2014 RC will safely pass near Earth at a distance of about 25,000 miles.
A small asteroid, designated 2014 RC, will safely pass very close to Earth on Sunday, September 7, 2014. At the time of closest approach, based on current calculations to be about 2:18 p.m. EDT (11:18 a.m. PDT / 18:18 UTC), the asteroid will be roughly over New Zealand. From its reflected brightness, astronomers estimate that the asteroid is about 60 feet (20 meters) in size.
Asteroid 2014 RC was initially discovered on the night of August 31 by the Catalina Sky Survey near Tucson, Arizona, and independently detected the next night by the Pan-STARRS 1 telescope, located on the summit of Haleakalā on Maui, Hawaii. Both reported their observations to the Minor Planet Center in Cambridge, Massachusetts. Additional follow-up observations by the Catalina Sky Survey and the University of Hawaii 88-inch (2.2-meter) telescope on Mauna Kea confirmed the orbit of 2014 RC.
At the time of closest approach, 2014 RC will be approximately one-tenth the distance from the center of Earth to the moon, or about 25,000 miles (40,000 kilometers). The asteroid’s apparent magnitude at that time will be about 11.5, rendering it unobservable to the unaided eye. However, amateur astronomers with small telescopes might glimpse the fast-moving appearance of this near-Earth asteroid.
Orbit Path of Near Earth Asteroid 2014 RC
This graphic depicts the orbit of asteroid 2014 RC around the sun. A house-sized asteroid will safely fly past Earth Sunday afternoon, September 7, at a distance equivalent to about one-tenth of the distance between Earth and the moon. Image Credit: NASA/JPL-Caltech
The asteroid will pass below Earth and the geosynchronous ring of communications and weather satellites orbiting about 22,000 miles (36,000 kilometers) above our planet’s surface. While this celestial object does not appear to pose any threat to Earth or satellites, its close approach creates a unique opportunity for researchers to observe and learn more about asteroids.
While 2014 RC will not impact Earth, its orbit will bring it back to our planet’s neighborhood in the future. The asteroid’s future motion will be closely monitored, but no future threatening Earth encounters have been identified.
For a heliocentric view of the orbit of asteroid 2014 RC with respect to Earth and other planets, visit: http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=2014+RC&orb=1
Source: DC Agle, Jet Propulsion Laboratory

Chimpanzees Outplay Humans in Brain Games


In a new study chimpanzees outplay humans in a two-player game, suggesting that chimps may have a superior memory and strategy when it comes to recalling their opponent’s choice history.

We humans assume we are the smartest of all creations. In a world with over 8.7 million species, only we have the ability to understand the inner workings of our body while also unraveling the mysteries of the universe. We are the geniuses, the philosophers, the artists, the poets and savants. We amuse at a dog playing ball, a dolphin jumping rings, or a monkey imitating man because we think of these as remarkable acts for animals that, we presume, aren’t smart as us. But what is smart? Is it just about having ideas, or being good at language and math?

Scientists have shown, time and again, that many animals have an extraordinary intellect. Unlike an average human brain that can barely recall a vivid scene from the last hour, chimps have a photographic memory and can memorize patterns they see in the blink of an eye. Sea lions and elephants can remember faces from decades ago. Animals also have a unique sense perception. Sniffer dogs can detect the first signs of colon cancer by the scents of patients, while doctors flounder in early diagnosis. So the point is animals are smart too. But that’s not the upsetting realization. What happens when, for just once, a chimp or a dog challenges man to one of their feats? Well, for one, a precarious face-off – like the one Matt Reeves conceived in the Planet of the Apes – would seem a tad less unlikely than we thought.

In a recent study by psychologists Colin Camerer and Tetsuro Matsuzawa, chimps and humans played a strategy game – and unexpectedly, the chimps outplayed the humans.

Chimps are a scientist’s favorite model to understand human brain and behavior. Chimp and human DNAs overlap by a whopping 99 percent, which makes us closer to chimps than horses to zebras. Yet at some point, we evolved differently. Our behavior and personalities, molded to some extent by our distinct societies, are strikingly different from that of our fellow primates. Chimps are aggressive and status-hungry within their hierarchical societies, knit around a dominant alpha male. We are, perhaps, a little less so. So the question arises whether competitive behavior is hard-wired in them.

In the present study, chimp pairs or human pairs contested in a two-player video game. Each player simply had to choose between left and right squares on a touch-screen panel, while being blind to their rival’s choice. Player A, for instance, won, each time their choices matched, and player B won, if their choices did not. The opponent’s choice was displayed after every selection, and payoffs in the form of apple cubes or money were dispensed to the winner.

In competitive games such as this, like in chess or poker, the players learn to guess their opponent’s moves based on the latter’s past choices, and adjust their own strategy at every step in order to win. An ideal game, eventually, develops a certain pattern. Using a set of math equations, described by game theory, it is easy to predict this pattern on paper. When the players are each making the most strategic choices, the game hovers around what is called an ‘equilibrium’ state.

In Camerer’s experiment, it turned out that chimps played a near-ideal game, as their choices leaned closer to game theory equilibrium. Whereas, when humans played, their choices drifted farther off from theoretical predictions. Since the game is a test of how much the players recall of their opponent’s choice history, and how cleverly they maneuver by following choice patterns, the results suggest that chimps may have a superior memory and strategy, which help them perform better in a competition, than humans. In other words, chimps seem to have some sort of a knack when fighting peers in a face-off.

Their exceptional working memory may be a key factor for chimps’ strategic skills. A movie clip, part of a study in 2007, impressively captures the eidetic memory of a 2-year old chimp as he played a memory masking game. It makes jaws drop to see him memorize random numerical patterns within 200 milliseconds, about half the time it takes for the human eye to blink. Memory of such incredible precision is rare in human babies and close to absent in adults, save for fictitious characters like Sheldon Cooper.

It may seem dispiriting to have chimps make chumps of us. But such human-chimp comparisons point to how the two species have evolved along different trajectories. The human brain is three times larger, and has about 20 billion neurons in the cortex, the seat of cognition, compared to 6 billion in chimps. This means that our brain is capable of highly specialized functions that a chimp brain isn’t. For example, we can build and use language in a myriad ways unlike chimps. But, to get such an advanced brain, psychologists believe that humans may have had to “tradeoff” the fine working memory and strategic thinking of the apes. Chimps use their strategic minds to get a competitive edge over their peers and climb their way up to be the alpha male. Whereas the human brain, with its unique language-related and collaborative skills, gives us a survival advantage in an egalitarian society. It’s the result of use it or lose it, where the environment has a major say.

In sum, what we garner from these studies is that every species has its own idiosyncrasies. Evolution is not just about adding on to existing prototypes, it is about fine-tuning them by eliminating the non-essential to create newer species that are, on the whole, better adapted to their surroundings — even if, in some particular ways, they are inferior.

Publication: Christopher Flynn Martin, et al., “Chimpanzee choice rates in competitive games match equilibrium game theory predictions,” Scientific Reports 4, Article number: 5182; doi:10.1038/srep05182

Source: Madhuvanthi Kannan, Yale University; Scientific American

NASA’s STEREO Spacecraft Witnesses a Dramatic Solar Eruption

New images from NASA’s Solar Terrestrial Relations Observatory show a dramatic solar eruption captured by one of STEREO’s two spacecraft, STEREO-B, which currently has a view of the far side of the sun.
A bright eruption of solar material surges into space as captured by NASA’s Solar Terrestrial Relations Observatory, which currently has a view of the far side of the sun. Image Credit: NASA/STEREO
NASA’s Solar Terrestrial Relations Observatory witnessed a dramatic solar eruption on August 24, 2014 — even with one of its “eyes” partially closed.
This imagery of a coronal mass ejection, a giant explosion of solar material that explodes out into space, was captured by one of STEREO’s two spacecraft, STEREO-B, which currently has a view of the far side of the sun.
The second spacecraft, STEREO-A, however, is in a temporary phase of recording only low-resolution data. Due to an orbit that has moved it toward the other side of the sun from Earth, STEREO-A adjusted its dish-shaped antenna on Aug. 20 to point slightly away from the bright heat of the star, and consequently to a position that isn’t pointed directly at Earth. The signal still comes to Earth but is fainter, so the spacecraft will be sharing only low-resolution data until it reemerges on the other side of the sun in early 2016.
Solar Terrestrial Relations Observatory Views a Dramatic Solar Eruption
Two images of the same coronal mass ejection erupting from the sun — hidden by the middle circles — on August 24, 2014. The left image from ESA/NASA’s SOHO was captured from Earth’s perspective. The right image from NASA’s STEREO was captured from the far side of the sun. Image Credit: ESA/NASA/SOHO/STEREO
The twin STEREO spacecraft provide views of the sun from a different angle than can be seen from Earth’s perspective. When combined with images from near-Earth spacecraft like the European Space Agency and NASA’s Solar and Heliospheric Observatory, it helps scientists understand the three-dimensional shape of the sun’s brilliant CME eruptions.
Source: Karen C. Fox, NASA’s Goddard Space Flight Center

Dot Against the Dark – New Image of Saturn’s Moon Mimas

New Image of Saturns Moon Mimas
This newly released image from the Cassini spacecraft shows Saturn’s moon Mimas.
As if trying to get our attention, Mimas is positioned against the shadow of Saturn’s rings, bright on dark. As we near summer in Saturn’s northern hemisphere, the rings cast ever larger shadows on the planet.
With a reflectivity of about 96 percent, Mimas (246 miles, or 396 kilometers across) appears bright against the less-reflective Saturn.
This view looks toward the sunlit side of the rings from about 10 degrees above the ringplane. The image was taken with the Cassini spacecraft wide-angle camera on July 13, 2014 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 752 nanometers.
The view was acquired at a distance of approximately 1.1 million miles (1.8 million kilometers) from Saturn and approximately 1 million miles (1.6 million kilometers) from Mimas. Image scale is 67 miles (108 kilometers) per pixel at Saturn and 60 miles (97 kilometers) per pixel at Mimas.
The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colorado.
Source: NASA

Materials Scientists Reveal the Power of Hidden Patterns

Materials Scientists Explore the Effects of Patterned Surfaces Deep Within Materials
Interfaces between solid materials are surfaces with intricate, internal structure (shown on the left). To control that structure, and to use it for specific applications, researchers model it a simplified way (shown on the right). Image: Niaz Abdolrahim and Jose-Luis Olivares/MIT
Materials Scientists at MIT have begun to explore the effects of patterned surfaces deep within materials, revealing that control of internal patterns can lead to significant improvements in the performance of the resulting materials.
Patterned surfaces are all the rage among researchers seeking to induce surfaces to repel water or adhere to other things, or to modify materials’ electrical properties.
Now materials scientists at MIT have added a new wrinkle to research on the patterning of surfaces: While most research has focused on patterns on the outer surfaces of materials, Michael Demkowicz and his team in MIT’s Department of Materials Science and Engineering (DMSE) have begun to explore the effects of patterned surfaces deep within materials — specifically, at the interfaces between layers of crystalline materials.
Their results, published in the journal Scientific Reports, show that such control of internal patterns can lead to significant improvements in the performance of the resulting materials.
Demkowicz explains that much research has aimed to create layered composites with desired strength, flexibility, or resistance to vibrations, temperature changes, or radiation. But actually controlling the surfaces where two materials meet within a composite is a tricky process.
“People don’t think of them as surfaces,” says Demkowicz, an associate professor in DMSE. “If they do, they think of it as a uniform surface, but as it turns out, most interfaces are not uniform.”
To control the properties of these materials, it is essential to understand and direct these nonuniform interfaces, Demkowicz says. He and his team have taken classical equations used to describe average properties of surfaces and adapted them to instead describe variations in these surfaces “location by location. That’s not easy to do experimentally, but we can do that directly in our computer simulations.”
The ability to simulate, and then control, how defects or variations are distributed at these interfaces could be useful for a range of applications, he says. For example, in materials used on the interior walls of fusion power reactors, such patterning could make a big difference in durability under extreme conditions.
As metal walls in these reactors are bombarded by alpha particles — the nuclei of helium atoms — from the fusion reaction, these particles embed themselves and form tiny helium bubbles, which over time can weaken the material and cause it to fail.
“It’s the most extreme of extreme environments,” Demkowicz says. But by controlling the patterning within the material so that the bubbles line up and form a channel, the helium could simply diffuse out of the materials instead of accumulating, he says. “If we’re successful in doing that, to produce a pathway for the helium to escape, it could be huge,” he says.
“By exploiting the internal structure as a template, exactly analogous to what people do with surfaces, we can make the bubbles form channels,” Demkowicz adds. The same principle can apply to engineering the properties of materials for other applications, he says, such as controlling how phonons — vibrations of heat or sound — move through a crystalline structure, which could be important in the production of thermoelectric devices. Similarly, the creation of pathways for diffusion within a material could help improve the efficiency of devices such as lithium-ion batteries and fuel cells, he says.
“The mechanical properties of materials also depend on the internal structure, so you can make them strong or weak,” Demkowicz says, by controlling these interfaces. While materials are ordinarily engineered for strength, there are applications where “you want something that comes apart easily at the seams,” he says.
David L. McDowell, executive director of the Institute for Materials at the Georgia Institute of Technology, who was not involved in this work, says it “is exciting in that it offers a practical reduced-order strategy to exploit extended defects, to influence and tailor properties and responses of interfaces in materials. These kinds of high-throughput advances in design of interfaces are a key component of realizing the vision of the U.S. Materials Genome Initiative, developing new and improved materials at half the time and half the cost.”
The research team also included postdocs Aurelien Vattre (now at the French Atomic Energy and Alternatives Commission), Niaz Abdolrahim, and Kedarnath Kolluri. The work was supported by the U.S. Department of Energy and the National Science Foundation.
Publication: A. J. Vattré, et al., “Computational design of patterned interfaces using reduced order models,” Scientific Reports 4, Article number: 6231; doi:10.1038/srep06231

Experimental Cosmologists Probe Beyond the Big Bang

New Measurements of the Cosmic Microwave Background
Cornell’s experimental cosmology research group recently announced the first results from a Cosmic Microwave Background study using a polarization-sensitive camera (ACTPol).
A long tradition of cosmology research in Cornell’s College of Arts and Sciences has given birth to a vigorous effort by a new generation of cosmologists to understand the Cosmic Microwave Background (CMB), the thermal radiation left over from the Big Bang.
“A large portion of all knowledge about the history of the universe as a whole is revealed when you fully understand the CMB,” says Michael Niemack, assistant professor of physics, whose work centers on CMB measurements.
Cosmology, the study of the nature and evolution of the universe, has progressed enormously during the past 30 years, says Jeevak Parpia, professor and chair of physics. “We are in an era of ‘precision’ cosmology.”
“This is a time of very rapid advances in the field,” agrees Liam McAllister, associate professor of physics and a specialist in string theory. “You don’t know on any given day what new discovery you’re going to see posted that night on arXiv.”
Henry Tye, the Horace White Professor of Physics Emeritus, was one of the pioneers in understanding inflation in string theory, and he left a legacy of unusual cooperation at Cornell among cosmologists of all sorts. McAllister says it’s quite rare to find a university like Cornell where there are meaningful collaborations linking string theorists, experimentalists and astronomers, such as his and Niemack’s research with associate professor of astronomy Rachel Bean.
“Cosmology at Cornell is a wonderful example of the culture of collaboration within arts and sciences disciplines, between highly skilled instrumentalists and researchers pondering the theoretical implications of physical laws,” says Gretchen Ritter, the Harold Tanner Dean of the College of Arts and Sciences.
“CMB research is a rich, ever-evolving field with a science mix that excites both the astronomy and physics communities,” adds Terry Herter, chair of astronomy. “Striving to understand the origin and evolution of the universe and fundamental physics at the same time – it doesn’t get much better than that.”
McAllister, recipient of a National Science Foundation Early Career Award for his work on theoretical models of the early universe, seeks to understand how the theories of the inflation that occurred in the universe’s earliest moments can be founded on a secure theoretical footing and emerge from a mathematically consistent structure.
“We’d like to understand the physics behind inflation,” he says. “One of our responsibilities as theorists is to try to predict the results of future experiments and interpret the results of existing experiments.”
According to McAllister, what’s needed is a theory in which the laws of gravity are fundamentally quantum mechanical, but that behave according to classical physics in systems that are big enough and slow moving. So far, he says, string theory is the only approach that offers a consistent theory of quantum gravity.
On the experimental side, the higher resolution CMB measurements that Niemack is pursuing relate directly to the tests of general relativity that Bean is interested in.
The completion of the Cornell Caltech Atacama Telescope (CCAT) project, which will be the largest submillimeter telescope in the world, will be a boon for cosmologists, says Niemack. He and Bean plan to use CCAT to probe galaxy cluster velocities with much higher precision than is now possible.
Experiments probing the CMB have the potential to reveal laws of nature at a much more fundamental level than has been proven in any other way. “For example, results from CMB polarization observations could have a transformative effect on the kinds of problems related to the early universe that we theorists pursue,” says McAllister.
“That’s what makes it so compelling,” adds Niemack. “Any one of these observations or experiments could fundamentally change how we see the universe.”
Experimental cosmology
Cornell’s experimental cosmology research group – which includes assistant professor of physics Michael Niemack, postdoctoral researchers Francesco De Bernardis and Shawn Henderson, and graduate students Brian Koopman and Patricio Gallardo –recently announced the first results from a Cosmic Microwave Background study using a polarization-sensitive camera (ACTPol) that Niemack led the design of for the 6-meter Atacama Cosmology Telescope.
“ACTPol has a unique niche in science that we can pursue better than anyone else because of the capabilities that we’ve built into our instrument,” says Niemack. “We’re looking for tiny, tiny signals, roughly a part in 107 above the background over a range of scales that have not been probed before.”
An upgrade to be completed this year will add three times as many detectors and an additional frequency channel to ACTPol, enabling the group to probe physics at grand unification energy scales, a trillion times higher energy than is probed at the Large Hadron Collider.

Researchers Discover New Evidence of Planets Forming 335 Light Years from Earth

Researchers Discover Evidence of Planet Forming 335 Light Years Away
This graphic is an artist’s conception of the young massive star HD100546 and its surrounding disk. Image Credit: P. Marenfeld & NOAO/AURA/NSF
Using a technique called “spectro-astrometry,” which enables small changes in the position of the carbon monoxide emission to be measured, astronomers have discovered new evidence of a second candidate planet forming around star HD100546.
Clemson — An international team of scientists led by a Clemson University astrophysicist has discovered new evidence that planets are forming around a star about 335 light years from Earth.
The team found carbon monoxide emission that strongly suggests a planet is orbiting a relatively young star known as HD100546. The candidate planet is the second that astronomers have discovered orbiting the star.
Theories of how planets form are well-developed. But if the new study’s findings are confirmed, the activity around HD100546 would mark one of the first times astronomers have been able to directly observe planet formation happening.
New discoveries from the star could allow astronomers to test their theories and learn more about the formation of solar systems, including our own, said Sean Brittain, an associate professor of astronomy and astrophysics at Clemson.
“This system is very close to Earth relative to other disk systems,” he said. “We’re able to study it at a level of detail that you can’t do with more distant stars. This is the first system where we’ve been able to do this.
“Once we really understand what’s going on, the tools that we are developing can then be applied to a larger number of systems that are more distant and harder to see.”
For more than a decade, the team has focused some of Earth’s most powerful telescopes on a disk-shaped cloud of gas and dust that surrounds HD100546.
The star is about 2.5 times larger and 30 times brighter than the sun, Brittain said. It’s in the constellation Musca, or The Fly, and can only be seen from the Southern Hemisphere.
Brittain made three trips to Chile as far back as 2003 to gather data for the research. He used telescopes at the Gemini Observatory and the European Southern Observatory.
The new planet astronomers believe they have found what would be an uninhabitable gas giant at least three times the size of Jupiter, Brittain said. Its distance from the star would be about the same distance that Saturn is from the sun.
The team used a technique called “spectro-astrometry,” which enables small changes in the position of the carbon monoxide emission to be measured. A source of excess carbon monoxide emission was detected that appears to vary in position and velocity. The varying position and velocity are consistent with orbital motion around the star.
The favored hypothesis is that emission comes from a “circumplanetary” disk of gas orbiting a giant planet, Brittain said.
“Another possibility is that we’re seeing the wake from tidal interactions between the object and the circumstellar disk of gas and dust orbiting the star,” he said.
The name of the article is “NIR Spectroscopy of the HAeBe Star 100546. III. Further Evidence of an Orbiting Companion?” The authors are Brittain; John S. Carr of the Naval Research Laboratory in Washington, D.C.; Joan R. Najita of the National Optical Astronomy Observatory in Tucson, Arizona; and Sascha P. Quanz and Michael R. Meyer, both of ETH Zurich, Institute for Astronomy.
The next step in the study would be to take a picture using the new high-contrast imagers on the European Southern Observatory’s Very Large Telescope or Gemini South Telescope, Brittain said.
Circumplanetary disks of rotating viscous material have long been thought to surround giant planets at birth, but little observational evidence for their existence has been found outside the solar system. They are believed to be the birthplaces of planetary moons, such as those that orbit Jupiter.
“There are different models of circumplanetary disks, but we’ve never seen one,” Brittain said.
Disks form in all kinds of environments in the universe as a consequence of a fundamental law of physics known as “the conservation of angular momentum.”
The law states that a spinning object will keep spinning just as hard unless a force acts on it. If the object gets smaller, it will spin faster and vice versa.
The same principle that causes ice skaters to speed up when they pull in their arms and legs also causes disks to form around objects as material falls on to them. This is true for disks around supermassive black holes at the center of galaxies, circumstellar disks around young stars and circumplanetary disks around forming planets.
Mark Leising, the chair of Clemson’s astronomy and astrophysics department, said Brittain’s work will raise the department’s international profile.
“I congratulate Dr. Brittain and his team on their excellent work,” Leising said. “Astronomers are now very good at finding already-formed planets around many nearby stars, but it has been difficult to watch the planets in the process of forming.
“Using very clever techniques and the most advanced telescopes on Earth, they have accomplished that. It’s great to see our faculty working with leading institutions around the world to make discoveries at the forefront of astronomy.”
Evidence of another planet forming was previously found farther out from HD100546. A blob of gas and dust that has grown denser over time was discovered about the distance Pluto is from the sun.
“It is in the process of collapsing,” Brittain said. “Maybe in a million years you’ll have another planet and disk.”
The outer candidate planet would be a gas giant planet about the size of Jupiter. It’s among the evidence that points to multiple and perhaps sequential planet formation.
A team that was led by Quanz and included Meyer reported the discovery of the outer candidate planet last year in The Astrophysical Journal Letters.
Publication: Sean D. Brittain, et al., “NIR Spectroscopy of the HAeBe Star HD 100546. III. Further Evidence of an Orbiting Companion?,” 2014, ApJ, 791, 136; doi:10.1088/0004-637X/791/2/136

BMGs – A New Generation of Strong Pliable Materials

Yale researchers have developed a new method that softens bulk metallic glasses (BMGs) sufficiently to allow for shaping – allowing the researchers to use the super-strong, lightweight material for things like cell phone cases and other electronic devices.
Someday, digital citizens around the world may have a Yale professor to thank for the supercool, extra-durable case protecting their smartphones.
Jan Schroers, who teaches mechanical engineering and materials science, has created a thin, lightweight smartphone case that is harder than steel and as easy to shape as plastic. Schroers developed the technology for the cases in his Yale lab; now he’s ready for a partner to bring the product into mass production.
“This material is 50 times harder than plastic, nearly 10 times harder than aluminum and almost three times the hardness of steel,” Schroers said. “It’s awesome.”
For years, academic and commercial institutions have sought an effective technique for shaping these bulk metallic glasses (BMGs) — a new generation of strong-yet-pliable materials. Electronics casings, in particular, have been identified as a desirable application. Yet past attempts at finding a shaping process were unsuccessful.
BMGs A New Generation of Strong Pliable Materials
According to Yale researcher Jan Schroers, This material is 50 times harder than plastic, nearly 10 times harder than aluminum and almost three times the hardness of steel.”
At Yale, Schroers spent much of the past decade pursuing a fundamentally different approach to precisely shaping complex geometries. Instead of melting the BMG material and forcing it into a mold at high temperatures, he utilized a unique, supercooled liquid state for the material, in which the BMG softens sufficiently to allow for shaping. With this technique, which Schroers calls thermoplastic forming, BMGs can be shaped like plastics. As a consequence, thermoplastic forming BMGs don’t require massive amounts of energy.
From there, Schroers focused on producing BMGs in sheets. That form, he reasoned, is the most conducive to practical, manufacturing applications. “Developing a fabrication method for BMG sheets has been extremely difficult because it requires a fundamentally different process,” Schroers said. “We succeeded recently, with a surprisingly versatile process that is fast, precise, and economical.”
Schroers’ method produces sheets that can be used in standard manufacturing operations and blow-molded into an array of shapes. Schroers’ lab also created a BMG blow-molding process, which can be carried out as easily as the process for blow-molding plastics.
Seeing the commercial potential for his technique, Schroers launched his own company, Supercool Metals. The company has exclusive licensing rights to the technology, which is owned by Yale. “We’re taking a great scientific idea and making it viable in the larger world,” said Tobias Noesekabel, Supercool Metals’ intern and an M.B.A. candidate at the Yale School of Management.
Until now, Schroers has focused on smaller-scale, specialty production items, including watch components and sensors. Smartphone cases were a natural, but challenging, next step.
“It’s obvious. The important properties in a cell phone case are hardness and weight,” Schroers explained.
He and his Yale team — postgraduate associate Rodrigo Miguel Ojeda Mota and graduate students Jittisa Ketkaew and Wen Chen — produce the cases by blow-molding BMG sheets into brass molds to precise specifications. Of particular note is the ability to design metal buttons into the sides of the case, which constitutes a huge advance in making smartphones more waterproof.
With the right manufacturing partner, Schroers said, he could scale up production by late 2015. He added that design work and production could remain local.
“We see ourselves doing this close to Yale,” Schroers said.

Fermi Reveals Gamma-Ray Variability of Thirteen Blazars

Astronomers from the Harvard-Smithsonian Center for Astrophysics used Fermi to monitor the gamma-ray variability of thirteen blazars, finding evidence that the emission arises in several different zones and/or from several mechanisms.

A blazar is a galaxy whose central, supermassive black hole shines intensely as it accretes material from the surrounding region. Although black hole accretion happens in many galaxies and situations, in blazars the infalling material erupts into a powerful, narrow beam of high velocity charged particles that are fortuitously pointed in our direction. These particles produce gamma rays, each photon over a hundred million times more energetic than the highest energy X-ray photons seen by the Chandra X-ray Observatory. Blazars are also generally characterized by having rapid, strong, and incessant variability, among a host of effects resulting from its beam of rapidly moving electrons.
Astronomers suspect that clues to the inner workings of black holes and accretion disks can be discerned from modeling the details of the variability, but this has been a difficult task. The complexity of the variability indicates that the emitting structures are also complex, and constraining the locations and sizes of the emitting sites has been hampered by a lack of long-term, sensitive observations capable of steady monitoring of the changing activity.
CfA astronomers Malgosia Sobolewska and Aneta Siemiginowska and two colleagues tackled the problem using the Large Area Telescope (LAT), a gamma ray imaging telescope onboard the Fermi spacecraft. LAT is well suited for studying the variability of blazars, and has been taking continuous observations of the gamma-ray sky since Fermi was launched in 2008. It therefore has an excellent set of light curves (plots of the intensity versus time) for blazars. Recent analyses showed that the blazar light seemed to be produced in random processes, at least for the high energy gamma-rays. The problem is that many of brightest blazar episodes are thought to be flares from a distinctly different kind of process than the regular emission, and if so they should be identified as not arising from a single random process. For example, there are hints in two blazars of activity that is preferentially occurring in six- or seven-day intervals, pointing to shocks or colliding ejecta of some kind.
The scientists undertook a systematic analysis of the first four years of the Fermi/LAT dataset for thirteen bright blazars, and they developed new methods that are insensitive to the known observational biases. They find that three blazars have emission consistent with arising from a combination of random processes; in two they constrain the characteristic times to seventeen and thirty-eight days respectively – longer times than ever before seen and suggestive that the gamma-ray and X-ray emissions arise in different zones of the blazar. In four other blazars they report evidence of characteristic timescales faster than one hour, a finding that is not easily understood and, together with their other conclusions, points to new progress and new puzzles in deciphering what makes blazars blaze.
Publication: M. A. Sobolewska, et al., “Stochastic Modeling of the Fermi/LAT γ-Ray Blazar Variability,” 2014, ApJ, 786, 143; doi:10.1088/0004-637X/786/2/143

New Research Explores Cosmological Simulations of Multicomponent Cold Dark Matter

A New Model for Dark Matter
Published in the Physics Review Letters, this image represents the distribution of dark matter in the universe computed within the two component flavor-mixed dark matter paradigm.
New breakthrough research on dark matter explores dark matter candidates as quantum flavor-mixed particles and demonstrates that the two-component dark matter model agrees with observational data at all scales.
Lawrence — Astrophysicists believe that about 80 percent of the substance of our universe is made up of mysterious “dark matter” that can’t be perceived by human senses or scientific instruments.
“Dark matter has not yet been detected in a lab. We infer about it from astronomical observations,” said Mikhail Medvedev, professor of physics and astronomy at the University of Kansas, who has just published breakthrough research on dark matter that merited the cover of Physical Review Letters, the world’s most prestigious journal of physics research.
Medvedev proposes a novel model of dark matter, dubbed “flavor-mixed multicomponent dark matter.”
“Dark matter is some unknown matter, most likely a new elementary particle or particles beyond the Standard Model,” Medvedev said. “It has never been observed directly, but it reveals itself via gravity it produces in the universe. There are numerous experiments around the world aimed at finding it directly.”
Medvedev’s theory rests on the behavior of elementary particles that have been observed or hypothesized. According to today’s prevalent Standard Model theory of particle physics, elementary particles — categorized as varieties of quarks, leptons and gauge bosons — are the building blocks of an atom. The properties, or “flavors,” of quarks and leptons are prone to change back and forth, because they can combine with each other in a phenomenon called flavor-mixing.
Breakthrough Research on Dark Matter
Published in a previous paper, this image represents the effect of “quantum evaporation.”
“In everyday life we’ve become used to the fact that each and every particle or an atom has a certain mass,” Medvedev said. “A flavor-mixed particle is weird — it has several masses simultaneously — and this leads to fascinating and unusual effects.”
Medvedev compared flavor-mixing to white light that contains several colors and can generate a rainbow.
“If white was a particular flavor, then red, green and blue would be different masses — masses one, two and three — that mix up together to create white,” he said. “By changing proportions of red, green and blue in the mix, one can make different colors, or flavors, other than white.”
Medvedev said that dark matter candidates are also theorized to be flavor-mixed — such as neutralinos, axions and sterile neutrinos.
“These are, in fact, the most preferred candidates people speak about all the time,” Medvedev said.
“Previously we discovered that flavor-mixed particles can ‘quantum evaporate’ from a gravitational well if they are ‘shaken’ — meaning they collide with another particle,” he said. “That’s a remarkable result, as if a spacecraft made of flavor-mixed matter and hauled along a bumpy road puts itself into space without a rocket or any other means or effort by us.”
Medvedev included the physics process of quantum evaporation in a “cosmological numerical code” and performed simulations using supercomputers.
“Each simulation utilized over a 1,000 cores and ran for a week or so,” he said. “This yearlong project consumed about 2 million computer hours in total, which is equal to 230 years.”
Medvedev said that dark matter may interact with normal matter extremely weakly, which is why it hasn’t been revealed already in numerous ongoing direct detection experiments around the world. So physicists have devised a working model of completely collisionless (noninteracting), cold (that is, having very low thermal velocities) dark matter with a cosmological constant (the perplexing energy density found in the void of outer space), which they term the “Lambda-CDM model.”
But the model has hasn’t always agreed with observational data, until Medvedev’s paper solved the theory’s long-standing and troublesome puzzles.
“Our results demonstrated that the flavor-mixed, two-component dark matter model resolved all the most pressing Lambda-CDM problems simultaneously,” said the KU researcher.
Medvedev performed the simulations using XSEDE high-performance computation facilities, primarily Trestles at the San Diego Supercomputer Center and Ranger at the Texas Advanced Computing Center.
Publication: Mikhail V. Medvedev, “Cosmological Simulations of Multicomponent Cold Dark Matter,” Phys. Rev. Lett. 113, 071303, 2014; doi:10.1103/PhysRevLett.113.071303

Consortium to Focus on Developing a New Architecture for the Internet

Consortium to Focus on Developing a New Architecture for the Internet
NDN leverages evidence about what has worked on the Internet over the past 30-plus years.
UCLA will host a consortium of universities and leading technology companies on September 4 and 5 to promote the development and adoption of Named Data Networking (NDN) – an emerging Internet architecture that promises to increase network security, accommodate growing bandwidth requirements and simplify the creation of increasingly sophisticated applications.
The consortium is being organized by a team of NDN researchers at the UCLA Henry Samueli School of Engineering and Applied Science. Other founding academic members of the NDN project are UC San Diego, Colorado State University, the University of Arizona, the University of Illinois Urbana–Champaign, the University of Memphis, the University of Michigan and Washington University in St. Louis.
The first NDN community meeting will be held September 4 and 5 at UCLA’s School of Theater, Film and Television, which has played a key role in envisioning the future of human communication over NDN since the project’s origins in 2010.
Among the industry partners planning to participate are Verisign, Cisco Systems and Panasonic. They will be joined by representatives from Anyang University (Korea), Tongji University and Tsinghua University (China), the University of Basel (Switzerland) and Waseda University (Japan).
“Collaboration with industry is an important step toward bringing Future Internet Architectures out of the laboratory and into the real world,” said Darleen Fisher, the NSF program officer who oversees the Future Internet Architectures program supporting NDN.
The NDN team’s goal is to build a replacement for Transmission Control Protocol/Internet Protocol, or TCP/IP, the current underlying approach to all communication over the Internet. The consortium aims to generate a vibrant ecosystem of research and experimentation around NDN; preserve and promote the openness of the core NDN architecture; and organize community meetings, workshops and other activities.
“NDN has built significant momentum through a commitment to an open approach that aims to limit proprietary intellectual property claims on core elements of the architecture,” said Lixia Zhang, UCLA’s Jonathan B. Postel Chair in Computer Science and a co-leader of the project.
“This has spurred substantial interest from both academia and industry. Our goal with the consortium is to accelerate the development of architecture that will lift the Internet from its origins as a messaging and information tool and better prepare it for the wide-ranging uses it has today and will have tomorrow,” Zhang said.
NDN leverages empirical evidence about what has worked on the Internet and what hasn’t, adapting to changes in usage over the past 30-plus years and simplifying the foundation for development of mobile platforms, smart cars and the Internet of Things — in which objects and devices are equipped with embedded software and are able to communicate with wireless digital networks.
Since 2010, the National Science Foundation’s Future Internet Architectures program has provided more than $13.5 million to the NDN project led by UCLA, including a grant of $5 million that was announced in May.
“Cisco Systems is enthusiastic about the formation of the NDN community,” said David Oran, a Cisco Fellow and a pioneer in Internet Protocol technologies. “It will help evolve NDN by establishing a multifaceted community of academics, industry and users. We expect this consortium to be a major help in advancing the design, producing open-source software, and fostering standardization and adoption of the technology.”
The NDN project is co-led by Zhang and Van Jacobson, a UCLA adjunct professor and member of the Internet Hall of Fame. UCLA became the birthplace of the Internet in 1969, when a message from the lab of UCLA computer science professor Leonard Kleinrock was sent to the Stanford Research Institute — the first-ever message transmitted over the network that later became known as the Internet.

New Titania-Based Material Shows Promise as Superconductor Insulator

Titania Based Material Shows Promise as New Superconductor Insulator
Energy dispersive x-ray spectroscopy image was taken within a scanning electron microscope, illustrating a Bi2212 wire shown in blue and green, coated with the titania-based insulation shown in red. Credit: Sasha Ishmael
In a newly published study, a team of researchers at North Carolina State University detail a new titania-based material that shows promise as an insulator for superconductors.
Research from North Carolina State University shows that a type of modified titania, or titanium dioxide, holds promise as an electrical insulator for superconducting magnets, allowing heat to dissipate while preserving the electrical paths along which current flows. Superconducting magnets are being investigated for use in next-generation power generating technologies and medical devices.
Regular conductors conduct electricity, but a small fraction of that energy is lost during transmission. Superconductors can handle much higher currents per square centimeter and lose virtually no energy through transmission. However, superconductors only have these desirable properties at low temperatures.
“Superconducting magnets need electrical insulators to ensure proper operation,” says Dr. Sasha Ishmael, a postdoctoral researcher at NC State and lead author of a paper describing the work. “Changing the current inside the superconductor is important for many applications, but this change generates heat internally. The magnets will operate much more safely if the electrical insulators are able to shed any excess heat. Otherwise, the higher temperatures could destroy the superconductor.
“This titania-based material is up to 20 times better at conducting heat than comparable electrical insulators,” Ishmael says. “It has characteristics that are very promising for use as electrical insulators for superconducting technologies.”
The precise chemical composition of the modified titania is proprietary information. The material’s development and characterization was a joint effort between NC State and nGimat LLC, based in Lexington, Kentucky.
“We’re now looking at the effect of radiation on this material, to determine if it can be used for high energy physics applications, such as particle colliders,” says Dr. Justin Schwartz, senior author of the paper and Kobe Steel Distinguished Professor and head of the Department of Materials Science and Engineering at NC State.
Publication: S. A. Ishmael, et al., “Thermal conductivity and dielectric properties of a TiO2-based electrical insulator for use with high temperature superconductor-based magnets,” 2014, Superconductor Science and Technology, 27, 095018; doi:10.1088/0953-2048/27/9/095018

Rosetta Orbiter Delivers First Batch of Science Data

Rosetta Orbiter Delivers of Science Data from Comet 67P
Artist’s impression of the Rosetta orbiter at comet 67P/Churyumov-Gerasimenko. The image is not to scale. Image Credit: ESA/ATG Medialab
European Space Agency’s Rosetta orbiter has delivered its first batch of science data from comet 67P/Churyumov-Gerasimenko, revealing hydrogen and oxygen in the comet’s atmosphere and showing that the color of the comet is darker than charcoal.
The instrument, named Alice, began mapping the comet’s surface last month, recording the first far-ultraviolet light spectra of the comet’s surface. From the data, the Alice team discovered the comet is unusually dark — darker than charcoal-black — when viewed in ultraviolet wavelengths. Alice also detected both hydrogen and oxygen in the comet’s coma, or atmosphere.
Rosetta scientists also discovered the comet’s surface so far shows no large water-ice patches. The team expected to see ice patches on the comet’s surface because it is too far away for the sun’s warmth to turn its water into vapor.
“We’re a bit surprised at just how unreflective the comet’s surface is and how little evidence of exposed water-ice it shows,” said Alan Stern, Alice principal investigator at the Southwest Research Institute in Boulder, Colorado.
Alice is probing the origin, composition and workings of comet 67P/Churyumov-Gerasimenko, to gather sensitive, high-resolution insights that cannot be obtained by either ground-based or Earth-orbiting observation. It has more than 1,000 times the data-gathering capability of instruments flown a generation ago, yet it weighs less than nine pounds (four kilograms) and draws just four watts of power. The instrument is one of two full instruments on board Rosetta that are funded by NASA. The agency also provided portions of two other instrument suites.
Other U.S. contributions aboard the spacecraft are the Microwave Instrument for Rosetta Orbiter (MIRO), the Ion and Electron Sensor (IES), part of the Rosetta Plasma Consortium Suite, and the Double Focusing Mass Spectrometer (DFMS) electronics package for the Rosetta Orbiter Spectrometer for Ion Neutral Analysis (ROSINA). They are part of a suite of 11 total science instruments aboard Rosetta.
MIRO is designed to provide data on how gas and dust leave the surface of the nucleus to form the coma and tail that gives comets their intrinsic beauty. IES is part of a suite of five instruments to analyze the plasma environment of the comet, particularly the coma.
To obtain the orbital velocity necessary to reach its comet target, the Rosetta spacecraft took advantage of four gravity assists (three from Earth, one from Mars) and an almost three-year period of deep space hibernation, waking up in January 2014 in time to prepare for its rendezvous with 67P/Churyumov-Gerasimenko.
Rosetta also carries a lander, Philae, which will drop to the comet’s surface in November 2014.
The comet observations will help scientists learn more about the origin and evolution of our solar system and the role comets may have played in providing Earth with water, and perhaps even life.
Source: Dr. Tony Phillips, Science@NASA